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TABLE 1

RATIOS OF ASYMPTOTIC VARIANCES

STATIONARITY ASSUMED (TO DETERMINEσ00 AND σ0α)

Var(IV)/Var(GMM1) Var(IV)/Var(GMM2)

σαα/ σε ε σαα/ σε ε

δ 0 .25 .5 1 2 4 0 .25 .5 1 2 4

T=3 -.99 1.00 1.00 1.01 1.01 1.01 1.01 1.00 1.01 1.01 1.01 1.01 1.01
-.9 1.04 1.05 1.05 1.06 1.07 1.10 1.05 1.05 1.06 1.07 1.09 1.12
-.8 1.08 1.09 1.10 1.12 1.15 1.21 1.08 1.09 1.11 1.14 1.18 1.25
-.5 1.14 1.19 1.23 1.31 1.43 1.61 1.14 1.20 1.26 1.35 1.51 1.72
-.3 1.15 1.24 1.31 1.44 1.66 1.94 1.15 1.25 1.35 1.51 1.77 2.11

0 1.14 1.29 1.42 1.67 2.04 2.52 1.14 1.32 1.49 1.80 2.27 2.86
.3 1.11 1.33 1.54 1.91 2.49 3.20 1.11 1.39 1.67 2.18 2.95 3.91
.5 1.08 1.35 1.62 2.10 2.82 3.71 1.08 1.45 1.84 2.53 3.58 4.87
.8 1.03 1.41 1.78 2.42 3.37 4.55 1.03 1.64 2.26 3.34 4.96 6.97
.9 1.02 1.45 1.85 2.54 3.57 4.85 1.02 1.76 2.49 3.75 5.62 7.96
.99 1.00 1.48 1.92 2.65 3.76 5.13 1.00 1.94 2.78 4.21 6.35 9.03

T=4 -.99 1.00 1.00 1.00 1.00 1.01 1.01 1.00 1.00 1.00 1.01 1.01 1.01
-.9 1.03 1.03 1.04 1.05 1.06 1.09 1.03 1.04 1.04 1.05 1.07 1.10
-.8 1.06 1.07 1.08 1.10 1.14 1.19 1.06 1.07 1.09 1.11 1.15 1.21
-.5 1.12 1.17 1.22 1.29 1.39 1.52 1.12 1.18 1.23 1.30 1.41 1.55
-.3 1.15 1.24 1.32 1.44 1.60 1.79 1.15 1.25 1.34 1.46 1.64 1.84

0 1.17 1.35 1.50 1.73 2.02 2.33 1.17 1.37 1.53 1.78 2.10 2.43
.3 1.16 1.46 1.72 2.11 2.61 3.11 1.16 1.50 1.79 2.23 2.79 3.35
.5 1.13 1.55 1.90 2.45 3.13 3.82 1.13 1.61 2.03 2.66 3.46 4.25
.8 1.06 1.72 2.28 3.13 4.19 5.25 1.06 1.89 2.62 3.74 5.12 6.50
.9 1.03 1.80 2.45 3.43 4.65 5.86 1.03 2.07 2.96 4.31 6.00 7.67
.99 1.00 1.91 2.64 3.74 5.11 6.48 1.00 2.33 3.41 5.02 7.03 9.04

T=10 -.99 1.00 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.00 1.00 1.01
-.9 1.02 1.03 1.03 1.03 1.04 1.05 1.02 1.03 1.03 1.03 1.04 1.05
-.8 1.04 1.05 1.06 1.07 1.08 1.10 1.04 1.05 1.06 1.07 1.08 1.10
-.5 1.08 1.12 1.15 1.18 1.21 1.24 1.08 1.12 1.15 1.18 1.21 1.25
-.3 1.10 1.18 1.22 1.27 1.32 1.37 1.10 1.18 1.22 1.27 1.32 1.37

0 1.15 1.30 1.38 1.46 1.55 1.61 1.15 1.30 1.38 1.47 1.55 1.62
.3 1.19 1.49 1.64 1.80 1.94 2.04 1.19 1.49 1.65 1.81 1.95 2.05
.5 1.21 1.70 1.95 2.21 2.41 2.56 1.21 1.71 1.96 2.22 2.43 2.57
.8 1.17 2.37 3.00 3.61 4.11 4.44 1.17 2.42 3.06 3.71 4.22 4.56
.9 1.11 2.86 3.76 4.67 5.38 5.86 1.11 2.96 3.92 4.89 5.65 6.16
.99 1.01 3.65 4.98 6.30 7.36 8.07 1.01 3.94 5.42 6.89 8.07 8.86



TABLE 2

RATIOS OF ASYMPTOTIC VARIANCES

STATIONARITY NOT ASSUMED

Var(IV)/Var(GMM1) Var(IV)/Var(GMM2)

σαα: 2 2 2 2 2 2 2 2 2 2 2 2

σ0α: .5 .5 .5 0 .5 1 .5 .5 .5 0 .5 1

σ00: 1 4 7 4 4 4 1 4 7 4 4 4

T: 3 3 3 3 3 3 3 3 3 3 3 3

δ = 0 4.52 1.61 1.33 1.49 1.61 1.73 5.20 1.72 1.39 1.58 1.72 1.87
.3 32.7 2.23 1.60 1.86 2.23 2.79 40.5 2.51 1.73 2.05 2.51 3.23
.5 57.3 3.34 2.07 2.39 3.34 5.54 73.6 3.97 2.36 2.76 3.97 6.85
.8 4.86 6.18 4.61 4.18 6.18 6.67 6.28 7.94 5.83 5.24 7.94 8.75
.9 3.37 5.00 4.94 4.49 5.00 3.91 4.31 6.45 6.36 5.73 6.45 5.06

1 2.58 3.51 3.70 4.00 3.51 2.58 3.26 4.49 4.75 5.14 4.49 3.26

Var(IV)/Var(GMM1) Var(IV)/Var(GMM2)

σαα: 1 2 5 2 2 2 1 2 5 2 2 2

σ0α: .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5

σ00: 4 4 4 4 4 4 4 4 4 4 4 4

T: 3 3 3 3 4 10 3 3 3 3 4 10

δ = 0 1.31 1.61 2.56 1.61 1.75 1.62 1.38 1.72 2.72 1.72 1.80 1.62
.3 1.55 2.23 4.20 2.23 2.60 2.45 1.73 2.51 4.57 2.51 2.73 2.46
.5 2.06 3.34 5.71 3.34 3.91 3.98 2.48 3.97 6.33 3.97 4.19 4.00
.8 6.98 6.18 5.52 6.18 4.76 3.31 10.4 7.94 6.21 7.94 5.29 3.35
.9 5.64 5.00 4.66 5.00 3.63 2.17 8.56 6.45 5.25 6.45 4.04 2.20

1 2.93 3.51 3.83 3.51 2.67 1.59 4.29 4.49 4.30 4.49 2.96 1.61



1. INTRODUCTION

This paper considers a regression model for dynamic panel data. That

is, we assume that we have observations on a large number of individuals, with

several observations on each individual, and the model of interest is a

regression model in which the lagged value of the dependent variable is one of

the explanatory variables. The error in the model is assumed to contain a

time-invariant individual effect as well as random noise.

We consider the commonly-assumed and empirically relevant case of a

large number of individuals (N) and a small number of time series observations

per individual (T), and so we study the asymptotic properties of our

estimators as N →∞ for fixed T. Then the basic problem faced in the estimation

of this model is that a fixed effects treatment leads to the within estimator

(least squares after transformation to deviations from means), which is

inconsistent because the within transformation induces a correlation of order

1/T between the lagged dependent variable and the error. The currently

available response to this problem [e.g., Anderson and Hsiao (1981), Hsiao

(1986), Holtz-Eakin (1988), Holtz-Eakin, Newey and Rosen (1988), Arellano and

Bover (1990), Arellano and Bond (1991)] is to first difference the equation to

remove the effects, and then estimate by instrumental variables (IV), using as

instruments values of the dependent variable lagged two or more periods. This

treatment leads to consistent estimates, but (under standard assumptions that

we will list) not to efficient estimates, because it does not make use of all

of the available moment conditions.

In this paper we find the additional moment conditions implied by a

standard set of assumptions. Unlike the conditions currently exploited in the

literature, some of these conditions are nonlinear. However, they can be

easily imposed in a generalized method of moments (GMM) framework. We show

that the resulting GMM estimator shares the efficiency properties of

Chamberlain’s (1982, 1984) minimum distance (MD) estimator if the errors in

the model are i.i.d (independently and identically distributed) across

individuals. The GMM estimator is also compatible with a specification of the

model in which the unobserved individual effects are independent across
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individuals but heteroskedastic. For some specific parameter values, we

evaluate the relevant asymptotic covariance matrices to show that the

additional moment conditions identified in this paper lead to non-trivial

gains in asymptotic efficiency.

We also link the literature on the static panel data model [e.g.,

Mundlak (1978), Chamberlain (1980), Hausman and Taylor (1981), Amemiya and

MaCurdy (1986), Breusch, Mizon and Schmidt (1989)] with the literature on the

dynamic model by showing how to make efficient use of exogenous variables as

instruments. There has been some confusion in the literature on this point,

largely due to the effects of first-differencing on the errors. The

assumption of strong exogeneity implies more orthogonality conditions than

current estimators exploit. These additional moment conditions all lie in the

"deviations from means" space and are irrelevant in the case of the static

model, but they are relevant in the dynamic model. We show how to categorize

and use these conditions.

The plan of the paper is as follows. Section 2 considers the simple

dynamic model with no exogenous variables under a standard set of assumptions,

and identifies the moment conditions available for estimation. Section 3

considers the same model under some alternative sets of assumptions. Section

4 considers the question of efficiency of estimation, and Section 5 gives some

calculations of the gain from using the extra moment conditions we have found.

Section 6 considers the model with exogenous regressors, and shows how to

categorize the moment conditions that are available and relevant in the

dynamic model. Finally, Section 7 contains some concluding remarks.

2. MOMENT CONDITIONS UNDER STANDARD ASSUMPTIONS

We will consider the simple dynamic model

(1) y it = δy i,t-1 + uit ,

uit = αi + ε it , i = 1, ..., N ; t = 1, ..., T .

Here i denotes cross sectional unit (individual) and t denotes time. The

error u it contains a time invariant individual effect αi and random noise ε it .
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Note that there are NT observations for the regression, and that the initial

observed value of y (for individual i) is y i0 ; assumptions about the

generation of y i0 are important in this literature. We can also write the T

observations for person i as

(2) y i = δy i,-1 + ui ,

where y i ’ = (y i1 ,...,y iT ) and y i,-1 and u i are defined similarly.

The model (1) does not contain any explanatory variables beyond the

lagged dependent variable. The issue raised by the presence of exogenous

regressors will be discussed in Section 6.

We assume that αi and ε it have mean zero for all i and t. (Nonzero mean

of α can be handled with an intercept.) We also assume that all observations

are independent across individuals. Furthermore, we will begin with the

following "standard assumptions" (SA):

(SA.1) For all i, ε it is uncorrelated with y i0 for all t.

(SA.2) For all i, ε it is uncorrelated with αi for all t.

(SA.3) For all i, the ε it are mutually uncorrelated.

We note that these assumptions are implied by a variety of simple models, such

as Chamberlain’s (1984) projection model, which asserts that

Proj(y it αi ,y i0 ,...,y i,t-1 ) = αi + δy i,t-1 , where Proj(z x) represents the

population least squares projection of a variable z on a set of variables x =

(x 1,...,x k). We also note that our assumptions on the initial value y i0 are

weaker than those often made in the literature. See, for example, Bhargava

and Sargan (1983), Hsiao (1986) and Blundell and Smith (1991) for examples of

stronger assumptions about the initial value y i0 .

Under SA, it is obvious that the following moment conditions hold:

(3) E(y is uit ) = 0 ; t = 2, ..., T ; s = 0, ..., t-2 .

There are T(T-1)/2 such conditions. These are the moment conditions that are

currently exploited in the literature. However, under SA there are additional

moment conditions beyond those in (3). In particular, the following T-2

moment conditions also hold:

(4) E(u iT uit ) = 0 ; t = 2, ..., T-1 .
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The conditions (3)-(4) are a set of T(T-1)/2 + (T-2) moment conditions

that follow directly from the assumptions that the ε it are mutually

uncorrelated and uncorrelated with αi and y i0 . Furthermore, they represent all

of the moment conditions implied by these assumptions. An informal but

instructive way to see this is as follows. We cannot observe αi or ε it , but u it

= ( αi +ε it ) is "observable" in the sense that it can be written in terms of data

and parameters (which is what is relevant for GMM). The implications of SA

for the u it are simply:

(5A) E(y i0 uit ) is the same for all t.

(5B) E(u is uit ) is the same for all s ≠ t.

This is also a set of T(T-1)/2 + (T-2) moment conditions, and it is easy to

show that it is equivalent to the conditions (3)-(4). The main advantage of

(3)-(4) over (5) is just that it maximizes the number of linear moment

conditions.

A more formal proof of the number of restrictions implied by SA can be

given as follows. We distinguish those things that we make assumptions about,

namely ( ε i1 ,..., ε iT ,y i0 , αi ), from things that we make assumptions about and that

are "observable" in the sense discussed above, namely ( αi +ε1i ,..., αi +ε iT ,y i0 ).

The covariance matrix of the things we make assumptions about will be denoted

Σ, as follows:

ε σ σ σ σ σi1 11 12 1T 10 1 α
ε σ σ σ σ σi2 21 22 2T 20 2 α

(6) Σ = cov =

ε σ σ σ σ σiT T1 T2 TT T0 T α
y σ σ σ σ σi0 01 02 0T 00 0 α
α σ σ σ σ σi α1 α2 αT α0 αα

On the other hand, the covariance matrix of the "observables"

will be denoted Λ, as follows:

α +ε λ λ λ λi i1 11 12 1T 10
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α +ε λ λ λ λi i2 21 22 2T 20

(7) Λ = cov =

α +ε λ λ λ λi iT T1 T2 TT T0

y λ λ λ λi0 01 02 0T 00

( σ +σ +2σ ) ( σ +σ +σ +σ ) ( σ +σ +σ +σ ) ( σ +σ )αα 11 α1 αα 12 α1 α2 αα 1T α1 αT 0α 01

( σ +σ +σ +σ ) ( σ +σ +2σ ) ( σ +σ +σ +σ ) ( σ +σ )αα 12 α1 α2 αα 22 α2 αα 2T α2 αT 0α 02

=

( σ +σ +σ +σ ) ( σ +σ +σ +σ ) ( σ +σ +2σ ) ( σ +σ )αα 1T α1 αT αα 2T α2 αT αα TT αT 0α 0T

( σ +σ ) ( σ +σ ) ( σ +σ ) σ0α 01 0α 02 0α 0T 00

Under SA, we have σαt = 0 for all t, σ0t = 0 for all t, and

σts = 0 for all t = / s. Then Λ simplifies as follows:

( σ +σ ) σ σ σαα 11 αα αα 0α
σ ( σ +σ ) σ σαα αα 22 αα 0α

(8) Λ =

σ σ ( σ +σ ) σαα αα αα TT 0α
σ σ σ σ0α 0α 0α 00

There are T-1 restrictions, that λ0t is the same fo r t = 1,...,T; and

T(T-1)/2-1 restrictions, that λts is the same for t,s = 1,...,T, t = / s. Adding

the number of restrictions, we get T(T-1)/2 + (T-2).

An intuitive way to understand the extra moment conditions that we have

identified and the efficiency gains that they lead to is as follows. We can

rewrite the model (1) as follows:

(9A) y it = δ y i,t-1 + uit , t = 2,3,...,T ,

(9B) y iT = δy i,T-1 + uiT .
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The usual IV estimator amounts to estimating the first-differenced equations

(9A) by three-stage least squares, imposing the restriction that δ is the same

in every equations, where the instrument set is y i0 for t=2; (y i0 ,y i1 ) for t=3;

...; (y i0 ,...,y i,T-2 ) for t=T. There are no legitimate observable instruments

for the levels equation (9B), but this equation is still useful in estimation

because of the covariance restrictions that u iT is uncorrelated with u it ,

t=2,...,T-1. These covariance restrictions are exactly the extra moment

conditions identified in equation (4). Of course, there are additional

covariance restrictions in (9A); for example, u 4 is uncorrelated with u 2.

However, these additional covariance restrictions are not useful in estimation

because, unlike the covariance restrictions in equation (4), they are implied

by the basic moment conditions in equation (3).

An interesting sidelight is that the moment conditions (4)-(5) hold

under weaker conditions than SA. Define the set of modified assumptions (MA):

(MA.1) For all i, cov( ε it ,y i0 ) is the same for all t.

(MA.2) For all i, cov( ε it , αi ) is the same for all t.

(MA.3) For all i, cov( ε it , ε is ) is the same for all t = / s.

Note that MA assumes equal covariance where SA assumes zero covariance.

Nevertheless, the moment conditions implied by SA are also implied by MA, as

is easily checked in the same way as above. Thus we can test whether

cov( ε it , αi ) is constant over t, but we cannot test whether it is zero.

Similarly, we can test constancy of cov( ε it ,y i0 ) but not whether it is zero.

3. SOME ALTERNATIVE ASSUMPTIONS

In this section we briefly consider some alternative sets of

assumptions. The first case we consider is the one in which (SA.1)-(SA.3) are

augmented by the additional assumption that the ε it are homoskedastic. That

is, suppose that we add the assumption:

(AA.4) For all i, var( ε it ) is the same for all t.

(Here "AA" is short for "added assumption.") This assumption, when added to

(SA.1)-(SA.3), generates the additional (T-1) moment conditions that
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(10) E(u it
2) is the same fo r t = 1, ..., T.

(In terms of equation (8) above, λtt is the same fo r t = 1,...,T.) Therefore

the total number of moment conditions becomes T(T-1)/2 + (2T-3). These moment

conditions can be expressed as (3), (4) and (10). Alternatively, if we wish

to maximize the number of linear moment conditions, Ahn and Schmidt (1990)

show that these moment conditions can be expressed as (3) plus the additional

conditions

(11A) E(y it ui,t+1 - y i,t+1 ui,t+2 ) = 0, t = 1, ..., T-2

(11B) E(
_
ui ui,t+1 ) = 0, t=1, ... ,T-1 ,

where
_
ui = T-1 ΣT

t=1 uit . Comparing this to the set of moment conditions without

homoskedasticity [(3)-(4)], we see that homoskedasticity adds T-1 moment

conditions and it allows T-2 previously nonlinear moment conditions to be

expressed linearly.

Another possible assumption is the "stationarity" assumption of Arellano

and Bover (1990). They assume that

(AA.5) E( αi y it ) is the same for all t.

This is equivalent in our framework to asserting that σαα = (1- δ) σ0α. If SA

and (AA.4) are maintained, (AA.5) adds one moment condition to the set

consisting of (3) and (11). However, it also allows all of the moment

conditions to be expressed linearly. In particular, given this condition, we

can write the set of usable moment conditions as (4) plus

(12A) E(u iT y it ) = 0 , t = 1,...,T-1 ;

(12B) E(u it y it - u i,t-1 y i,t-1 ) = 0 , t = 2,...,T .

This is a set of T(T-1)/2 + (2T-2) moment conditions, all of which are linear

in δ.

An interesting question that this paper will not address is how much our

assumptions can be weakened without losing all moment conditions. Ahn and

Schmidt (1990, Appendix) give a partial answer by counting the moment

conditions implied by many possible combinations of (SA.1), (SA.2), (SA.3) and

(A.4). The reader is referred to that paper for details.
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4. ASYMPTOTIC EFFICIENCY

GMM based on the full set of moment conditions (3)-(4) makes efficient

use of second moment information, and intuitively we should expect it to be

asymptotically equivalent to other estimators that make efficient use of

second moment information, notably Chamberlain’s (1982, 1984) minimum distance

estimator. We now proceed to prove this asymptotic equivalence.

To define some notation, let ηi = (u i1 ,...,u iT ,y i0 )’ be the vector of

"observables," with cov( ηi ) = Λ as given in (7) above, and let ξ i =

(y i0 ,y i1 ,...,y iT )’ be the vector of observed values of y, with covariance matrix

Ω. (Recall that ηi is "observable" in the sense that it can be written as a

function of data and δ.) We assume that the ηi (or, equivalently, the ξ i ) are

i.i.d across individuals. The assumption of homoskedasticity is required for

the existence of a consistent minimum distance estimator.

The connection between ηi and ξ i is linear: ξ i = Dηi , ηi = D-1 ξ i , where D

is a (T+1)×(T+1) nonsingular matrix that depends on δ. Specifically, D h,T+1 =

δh-1 , h = 1,...,T+1; fo r j = 1,...,T an d h = 1,...,T+1, D hj = 0 for h ≤j and D hj

= δ h-j-1 for h>j. (If we rearrange ηi so that y i0 comes first instead of last,

then D is lower triangular and D hj = δ h-j for h ≥j.) Thus Ω = DΛD’. Define

(13) S = N -1 Σi ξ i ξ i ’ , Z = N -1 Σi ηi ηi ’ ;

note tha t S = DZD’. Define the vectors of parameters

(14) θ = ( σ00, σαα, σ0α, σ11,..., σTT)’, γ = ( δ, θ’)’ ,

so that Λ depends on θ, D depends on δ, and Ω depends on γ . Finally, define

= cov[vec( ηi ηi ’)], and note that cov[vec( ξ i ξ i ’)] = ψ = (D⊗D) (D ⊗D)’.

In this notation, the basic results of Chamberlain (1984) can be stated

as follows. The quasi-maximum likelihood (QML) estimator solves the problem

(15) max γ L = (N/2)ln Ω-1 - (N/2)trace( Ω-1 S).

Its asymptotic covariance matrix is of the form

(16) C QML = [G’H’( Ω⊗Ω) -1 HG]-1 G’H’( Ω⊗Ω) -1 ψ( Ω⊗Ω) -1 HG[G’H’( Ω⊗Ω) -1 HG]-1 .

Here G = ∂v( Ω)/ ∂ γ ’, where v( Ω) equals vec( Ω) with the above-diagonal elements

of Ω deleted; and H is the "duplication matrix" [e.g., Magnus and Neudecker
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(1988, p. 49)] such that Hv( Ω) = vec( Ω). The minimum distance (MD) estimator

based on the observables ξ i solves the problem

(17) min γ [v(S)-v( Ω)]’A N[v(S)-v( Ω)]

and its asymptotic covariance matrix is of the form

(18) C MD = (G’AG) -1 G’A(J ψJ’) -1 AG(G’AG) -1

wher e J = (H +)’ = (H’H) -1 H’ is the "elimination matrix" such that v( Ω) =

Jvec( Ω), and wher e A = plim A N. The QMLE is a MD estimator, wit h A = H’( Ω⊗Ω) -

1H. This choice of A is suboptimal except under normality. The optimal

minimum distance (OMD) estimator use s A = (J ψJ’) -1 , and its asymptotic

covariance matrix is of the form

(19) C OMD = [G’(J ψJ’) -1 G] -1 .

The OMD estimator is asymptotically efficient relative to the QML estimator,

but they are equally efficient under normality.

Normal quasi-maximum likelihood estimation of the dynamic panel data

model has been discussed by Bhargava and Sargan (1983) and Hsiao (1986,

section 4.3.2) under a variety of assumptions about the generation of y i0 ,

including assumptions equivalent to ours (y i0 correlated with αi and

stationarity not imposed). Chamberlain’s results indicate that these

estimators are asymptotically dominated by estimators that make efficient use

of second moment information but do not impose normality, such as the OMD

estimator and (as we shall see) our GMM estimator.

Our GMM estimator is based upon the covariance matrix of the

"observables" ηi instead of the observed ξ i . Accordingly, we now consider OMD

estimation based upon Λ = cov( ηi ) instead of upon Ω = cov( ξ i ), as above; that

is, we now consider Z = Σi ηi ηi ’ instead of S = Σi ξ i ξ i ’. This alternative OMD

estimator solves the problem

(20) min γ [v(Z)-v( Λ)]’B N[v(Z)-v( Λ)],

where plim B N = (J J’) -1 , and where it should be remembered that Z depends on δ

while Λ depends on θ. Sinc e S = DZD’ and Ω = DΛD’, the information content in

[v(S)-v( Ω)] and [v(Z)-v( Λ)] is the same. Thus it is reasonable that the OMD

estimators based on (17) and on (20) should be asymptotically equivalent
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(though they may differ in finite samples due to the way that the weighting

matrices are evaluated). We show in Appendix 1 that this is so. Thus it

doesn’t matter asymptotically whether OMD estimation is based on cov( ηi ) or on

cov( ξ i ).

We now wish to show that the OMD estimator based on (20) is

asymptotically equivalent to our GMM estimator. Define m( γ) = v[Z( δ)- Λ( θ)],

so that the OMD estimator is a GMM estimator based on the moment condition

E[m( γ)] = 0. Now consider a possible transformation of these moment

conditions: b( γ) = Fm( γ), where F is nonstochastic and nonsingular.

Obviously GMM based on b( γ) is the same as GMM based on m( γ) since we have

just taken a nonsingular linear combination of the moment conditions. (In

fact, this is essentially the same result as just given in the previous

paragraph.) In particular, as discussed in Appendix 1, there exists a matrix

F such that

(21) b( γ) = Fm( γ) = [h( δ)’, (p( δ)- θ)’]’

where the first subset of transformed moment conditions, h( δ), is the set of

moment conditions exploited by our GMM estimator, and the second subset of

transformed moment conditions, p( δ)- θ, just determines θ in terms of δ. It

follows [see, e.g., Abowd and Card (1989, appendix)] that GMM based on h( δ)

only yields the same estimate of δ as GMM based on the entire set of moment

conditions b( γ) [or m( γ)].

The fact that our GMM estimator based on the moment conditions (3)-(4)

is asymptotically equivalent to Chamberlain’s optimal minimum distance

estimator confirms the intuition that the GMM estimator is efficient in the

class of estimators that make use of second-moment information. In this

regard, it should be noted explicitly that (SA.1)-(SA.3) are stated in terms

of uncorrelatedness only, so that only second-moment information is relevant.

If we replaced uncorrelatedness with independence, for example, additional

moment conditions involving higher-order moments would (at least in principle)

be potentially relevant. These additional moment conditions would not lead to
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gains in asymptotic efficiency when ηi is normal; because our model is linear

in ηi , under normality only second moments matter.

The GMM/minimum distance estimator reaches the semiparametric efficiency

bound discussed by Newey (1990). A sketch of the proof is given in Appendix

2. This result is intuitively reasonable. The unrestricted estimator of

v( Ω), v(S), reaches the semiparametric efficiency bound J ψJ’, using standard

results of Chamberlain (1987) and Newey (1990) on the semiparametric

efficiency of the sample mean. The minimum distance estimator efficiently

imposes the restrictions on v( Ω), thus preserving semiparametric efficiency.

Further discussion can be found in Chamberlain (1987).

Even though under SA the optimal minimum distance estimator shares the

asymptotic properties of our GMM estimator, the latter may be preferred for

two reasons. First, the GMM estimator of δ can be more easily calculated,

because the nuisance parameters ( σαα, σ00, σ0α, σ11, ..., σTT) need not be

considered in the GMM estimation procedure. Second, the consistency and

asymptotic normality of the GMM estimator require only SA and cross-sectional

independence of ηi and ξ i , while cross-sectional homoskedasticity is also

required for the consistency of the minimum distance estimator.

5. CALCULATIONS OF ASYMPTOTIC VARIANCES

In this section we attempt to quantify the gains in asymptotic

efficiency that arise from using the extra moment conditions identified in

this paper. We consider three estimators. (i) Let
^δ IV be GMM using (3) only.

This is the estimator suggested in the existing literature. Under

homoskedasticity it can be calculated as linear IV on the first-differenced

equation. (ii) Let
^δGMM1 be GMM using (3) and (4). This estimator exploits

the extra nonlinear moment conditions that arise under SA. (iii) Let
^δGMM2 be

GMM using (3) and (11). This estimator assumes homoskedasticity as well as

SA. Asymptotically
^δ IV is least efficient and

^δGMM2 is most efficient.

We will quantify the differences in efficiency by calculating the

asymptotic covariance matrices of the three estimates, for given parameter
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values. The asymptotic covariance matrices can be found in Ahn (1990) and Ahn

and Schmidt (1990). The relevant parameter values are T, δ, σ00, σαα, σ0α, σ11,

..., σTT. However, in this section we will consider only the case that the ε it

are i.i.d., so that the T variances σ11, ..., σTT can be replaced by a single

variance, say σε ε. Furthermore, because our results are invariant to scale, a

normalization of the variances is possible, and we pick σε ε = 1 as our

normalization.

In Table 1 we report some results for the case in which y is stationary.

Thus the errors are homoskedastic so that the extra moment conditions

underlying
^δGMM2 are valid. Furthermore, we set σ00 and σ0α according to the

stationarity conditions σ0α = σαα/(1- δ), σ00 = σαα/(1- δ) 2 + σε ε/(1- δ2). This

leaves three relevant parameters: T, δ, and σαα. We present results for T =

3, 4 and 10; for δ ranging from -.99 to .99; and for σαα (to be interpreted

as σαα/ σε ε) ranging from zero to four. The results are the ratios of

asymptotic variances [e.g., var(
^δ IV )/var(

^δGMM2)].

The efficiency gains found in Table 1 from using additional moment

conditions are certainly non-trivial. They increase as T increases, which is

perhaps surprising, since the proportion of extra moment conditions to total

moment conditions decreases with T. (The numbers of moment conditions for the

three estimators are 3, 4 and 6 for T=3; 6, 8 and 11 for T=4; and 45, 53 and

62 for T=10.) The efficiency gains also increase as σαα/ σε ε increases, which

is not surprising. The efficiency gains increase as δ increases toward one, a

finding predicted correctly by one of the referees of an earlier draft of this

paper. When δ is close to unity, the "first stage regressions" in the

calculation of
^δ IV are essentially regressions of differences on levels, and

have little explanatory power. Finally, the efficiency gains of
^δGMM1 over

^δ IV

are often substantial, while the additional efficiency gains of
^δGMM2 over

^δGMM1

are usually small. For example, fo r T = 4, δ = 0.9 and σαα/ σε ε = 1, the

asymptotic variance of
^δ IV is 3.4 times as large as the asymptotic variance of

^δGMM1 and 4.3 times as large as the asymptotic variance of
^δGMM2, so the

asymptotic variance of
^δGMM1 is only about 1.3 times as large as the asymptotic
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variance of ^ δGMM2. Most of our efficiency gains come from imposing the extra

moment conditions (4) that follow from SA, not from the moment conditions that

follow from the additional assumption of homoskedasticity.

In Table 2 we report results for some cases in which we do not impose

stationarity, though we still impose homoskedasticity (with σε ε normalized to

unity). We will not discuss these results in detail, but we note that there

are exceptions to some of the conclusions from the results in Table 1.

However, the gains from our extra moment conditions are, if anything, larger

than they were in the stationary case.

This model is heavily overidentifed, in the sense that there are many

more moment conditions than parameters to estimate. It is a conventional

wisdom that the asymptotic properties of estimators may be a poor guide to

their finite sample properties in heavily overidentified models. While we

did not conduct any simulations on our model, Arellano and Bond (1991, section

4) provide some relevant Monte Carlo evidence. Their model is the same as

ours, except that it contains an exogenous regressor, which was used as a

single instrument. Their estimators GMM1 and GMM2 correspond to the set of

T(T-1)/2 moment conditions exploited by our
^δ IV (they differ in finite samples

in the way in which the weighting matrix is evaluated), while their estimators

AHd and AH1 follow Anderson and Hsiao (1981) in using only a single moment

condition based on lagged y’s (using instruments y i,t-2 and y i,t-2 respectively).

Their results are for T=7 so the model is highly overidentified. They report

(p. 284) that the extra instruments result in substantial finite sample

efficiency gains, and also (p. 285) that the asymptotic standard errors were

close to the finite sample standard deviations of the estimates. Their model

and estimation procedures are close enough to ours to hope that their

optimistic results would generalize.

6. Moment Conditions with Exogenous Variables

We now consider the regression model with explanatory variables:

(22) y it = δy i,t-1 + Xit β + Zi γ + uit , u it = αi + ε it .
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Here X it is a 1 × k vector of time-varying explanatory variables and Z i is a 1

× g vector of time invariant explantory variables. We create data vectors

and matrices by ordering observations first by individual and then by time.

Thus, for example,

(23) y = (y 11, ... , y 1T; ... ; y N1 , ... , y NT)’ .

With this convention the model in matrix form is

(24) y = y -1 δ + Xβ + Zγ + u = Wξ + u ,

u = α + ε , W = (y -1 , X, Z), ξ’ = ( δ, β’, γ ’).

We adopt the following standard notation for projections. For any

matrix A, let P A be the projection onto the column space of A, so that P A =

A(A’A) -1 A’ if the inverse exists; let Q A = I-P A. For any integer m, let e m be

an mx1 vector of ones, and defin e P = eTeT’/T and Q = I-P. Then define

(25) V = I N⊗eT ; P V = I N⊗eTeT’/T = I N⊗P; QV = I N - P V = I N⊗Q ;

so that V is a matrix of individual dummy variables, P V is the NT × NT

idempotent matrix that converts an N T × 1 vector ordered as in (23) above into

a vector of individual means, and Q V is the NT × NT idempotent matrix that

converts an N T × 1 vector into deviations from individual means. The spaces

spanned by Q V and PV are orthogonal and exhaustive: P vQV = 0, P V + QV = I NT.

We assume independence of all variables across individuals (different

values of i). We also assume that the regressors X and Z are strongly

exogenous with respect to ε ; we will later distinguish variables that are or

are not correlated with α. We will not make detailed assumptions of

regularity conditions on X and Z, but rather simply assume that the relevant

second moment matrices converge to nonsingular limits as N →∞.

In order to explain the efficient use of exogenous variables in the

dynamic model, we first give a brief summary of existing results for the

static model that does not contain the regressor y -1 , we consider the model

(26) y = X β + Zγ + u , u = α + ε .

Under our assumptions about α and ε , the covariance structure of u is:

(27) Ω-1 = [cov(u)] -1 = QV + θ2PV , Ω-1/2 = QV + θPV ,
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where QV and PV are defined in (25), θ2 = σε ε/( σε ε+Tσαα), and the equalities in

(27) actually hold up to an irrelevant factor of proportionality. Now

transform (26) by Ω-1/2 :

(28) Ω-1/2 y = Ω-1/2 Xβ + Ω-1/2 Zγ + Ω-1/2 u

so that the error in (28) is whitened. The estimators that we will generalize

are IV estimators of (28), using instruments of the for m G = [QVX,P VJ], where

J is to be defined. As noted by Breusch, Mizon and Schmidt, IV of (28) using

instruments G of this form is equivalent to GMM based on the orthogonality

condition E(G’u) = 0, because the optimal weighting matrix in GMM implicitly

performs the Ω-1/2 transformation.

The precise form of J in the instrument set varies across authors, and

its relationship to exogeneity assumptions is not entirely explicit in the

literature. Following Hausman and Taylor, we partition X and Z: X = [X 1,X 2],

Z = [Z 1,Z 2], where X 1 and Z 1 are uncorrelated with α but X 2 and Z 2 are

correlated with α. As a matter of notation, let the column dimensions of X 1,

X2, Z 1 and Z 2 be k 1, k 2, g 1 and g 2, respectively. We also follow Breusch, Mizon

and Schmidt in defining the following notation. For any (arbitrary) NT × h

matrix S, with representative row S it (of dimensio n 1 × h), define th e N x ht

matrix S o as:

S S · · · S11 12 1T

S S · · · S11 12 1T
o(24) S = · · ·

· · ·
· · ·

S S · · · S11 12 1T

and define the NT x hT matrix S * = So ⊗ eT. (Note that all T values of S it are

separate values in S * .) Then we have the following instrument sets (where HT

stands for Hausman and Taylor (1981), BMS stands for Breusch, Mizon and

Schmidt (1989), and AM stands for Amemiya and MaCurdy (1986)):

(30) J HT = [X 1,Z 1] , J AM = [X 1*,Z 1], J BMS = [X 1*,(Q VX2)*,Z 1] ,
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As in Breusch, Mizon and Schmidt, (Q vX2)* indicates that any (T-1) independent

deviations from means of each variable in X 2 are used separately as

instruments.

In the set of instrument s G = [QVX,P VJ], obviously P VJ is in the space

spanned by P V while Q VX is in the space spanned by Q V. Hausman and Taylor

actually defined their instrument set to be of the form
_
G = [QV,J], so that

all of Q v was included in the instrument set, not just Q vX. Breusch, Mizon

and Schmidt showed that this did not matter, for the static model. Although

the projections onto G and
_
G are different, these instrument sets lead to

identical estimators for the static model. This is so because, if we

conceptually separate the regressors in (28) into Q VX, P VX and Z, instruments

in Q V space other than Q VX have no explanatory power in the first-stage

regressions. Therefore, for the static model , there is no point in looking

for additional instruments in the space spanned by Q V. However, for the

dynamic model , Q V is not a legitimate part of the instrument set; this is the

reason the within estimator is inconsistent. Therefore functions of X and Z

that lie in the space spanned by Q V can be legitimate instruments and can make

a difference to the estimator, by helping to better "explain" the regressor

QVy-1 . As we will see, given strong exogeneity of X and Z with respect to ε ,

many such instruments exist, in addition to Q vX.

In order to find such instruments, we now make explicit exogeneity

assumptions, and make clear how they relate to the existing different

treatments of the static model.

(E.1) For all i, X it is uncorrelated with ε is for all t and s.

(E.2) For all i, Z i is uncorrelated with ε it for all t.

(E.3) For all i, X 1,it is uncorrelated with αi for all t.

(E.4) For all i, Z 1,i is uncorrelated with αi .

(E.5) For all i, E(X 2,it , αi ) is the same for all t.

Assumptions E.1 and E.2 say that X and Z are strongly exogenous with

respect to the noise ε . Assumptions E.3 and E.4 say that X 1 and Z 1 are also

uncorrelated with α, but they allow X 2 and Z 2 to be correlated with α.
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Finally, E.5 is consistent with the view that the correlation between X 2 and α

is due solely to a time-invariant component of X 2 that is correlated with α.

The Breusch, Mizon and Schmidt estimator implicitly depends all five of these

assumptions, while the Amemiya and MaCurdy estimator depends only on the first

four. The Hausman and Taylor estimator depends on E.1, E.2, E.4, and a

weakened version of E.3, namely, that
_
X1,i is uncorrelated with αi for all i.

The exogeneity conditions E.1 - E.4 immediately imply the following

usable moment conditions.

(M.1) E(X 1,it uis ) = 0 for all t and s.

(M.2) E(Z 1,i uit ) = 0 for all t.

(M.3) Fo r t = 1,...,T, E(X 2,it uis ) is the same for all s. (It

may depend on t.)

(M.4) E(Z 2,i uit ) is the same for all t.

In addition, if we add exogeneity condition E.5 we have the additional moment

condition

(M.5) E(X 2,it uis ) is the same for all t.

Note that M.3 and M.5 together imply that E(X 2,it uis ) is the same for all t and

s.

We now proceed to write these conditions in matrix form, and to show

that the GMM estimator that imposes these conditions in the static model is

equivalent to the Breusch, Mizon and Schmidt estimator. To do so, we define a

little more notation. First, we define th e T × (T-1) (first-differencing)

matrix L as follows:

-1 0 0 · · · 0

1 -1 0 · · · 0

0 1 -1 · · · 0

(31) L = 0 0 1 · · · 0

· · · ·
· · · ·
· · · ·

0 0 0 · · · -1

0 0 0 · · · 1
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Second, define th e N × k1T matrix X 1
o and the N × k 2T matrix X 2

o as in (29), and

define th e N × g1 matrix Z 1
o and the N × g 2 matrix Z 2

o as follows:

Z Z1,1 2,1

· ·o o(32) Z = · , Z = ·1 2· ·

Z Z1,N 2,N

Then, following Schmidt, Ahn and Wyhowski (1992), we can express the moment

conditions M.1-M.4 as follows:

(33) E(R 1’u) = 0 , R 1 = [X 1
o⊗I T,X 2

o⊗L,Z 1
o⊗I T,Z 2

o⊗L].

Note that each variable in X 1 generates T 2 instruments; each variable in X 2

generates T(T-1) instruments; each variable in Z 1 generates T instruments;

and each variable in Z 2 generates (T-1) instruments. Furthermore, if (under

exogeneity assumption E.5) we add moment condition M.5, we can express moment

conditions M.1-M.5 as follows:

(34) E(R 2’u) = 0, R 2 = [R 1,(Q vX2)*] = [X 1
o⊗I T,X 2

o⊗L,Z 1
o⊗I T,Z 2

o⊗L,(Q vX2)*].

To compare GMM based on the instrument sets R 1 and R2 to the Amemiya and

MaCurdy and the Breusch, Mizon and Schmidt estimators, we use the following

notation. We define the relationship "=
P

" between two matrices to mean that

they yield the same projection; that is, A =
P

B if P A = PB. Specifically, we

recall th e T × T idempotent matri x Q = I T-e TeT’/T, and we note that P L =
P

PQ = Q,

I T ⊗ L =
P

QV. We also define the NT × k 1T(T-1) matrix X 1** = X 1
o ⊗ L, with X 2**,

Z1** and Z 2** defined similarly. Then we can state the following results:

(35A) R 1 =
P

[X 1**,X 2**,Z 1**,Z 2**;X 1*,Z 1]

(35B) R 2 =
P

[X 1**,X 2**,Z 1**,Z 2**;X 1*,(Q VX2)*,Z 1] .

To understand these results, we consider the instruments X 1
o⊗I T that

appear in both R 1 and R2, and which represent the moment conditions M.1. We

can rewrite these as follows: X 1
o⊗I T = QV(X 1

o⊗I T) + P V(X 1
o⊗I T) =

P
[X 1

o⊗Q,X1*] =
P

[X 1
o⊗L,X 1*] = [X 1**,X 1*]. Note that there are k 1T

2 instruments, corresponding

to the k 1T
2 moment conditions in M.1; k 1T(T-1) are in Q V space and k 1T are in

PV space.
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The remaining moment conditions are similar. The moment conditions M.2

are represented by the instruments Z 1
o⊗I T, which can be rewritten as follows:

Z1
o⊗I T =

P
[Z 1

o⊗L,Z 1] = [Z 1**,Z 1]. There are g 1T moment conditions in M.2, and

there are g 1(T-1) instruments in Q V space and g 1 instruments in P V space. The

moment conditions M.3 are represented by the instruments X 2
o⊗L = X2**. There

are k 2T(T-1) instruments, all in Q V space. The moment conditions M.4 are

represented by the instruments Z 2⊗L = Z2**. There are g 2(T-1) instruments, all

in Q V space. Finally, the moment conditions M.5 add the additional k 2(T-1)

instruments (Q vX2)* to R 2; all of these instruments are in P v space.

From (35A) we can see that the instrument set R 1 is larger than the

Amemiya and MaCurdy instrument set G AM = [Q vX,X 1*,Z 1] but smaller than the

instrument set G
_

AM = [Q v,X 1*,Z 1]. However, for the static model, R 1, G AM and G
_

AM

all lead to the same estimator, since additional instruments in Q v space are

irrelevant in the static model. Similarly, from (35B) we see that the

instrument set R 2 is larger than the Breusch, Mizon and Schmidt instrument set

GBMS = [Q VX,X 1*,(Q VX2)*,Z 1], and not as large as the instrument set
_
GBMS =

[Q V,X 1*,(Q VX2)*,Z 1]; however, for the static model, R 2, G BMS and
_
GBMS all lead to

the same estimator. Thus, for the static model, GMM based on the moment

conditions M.1-M.4 is equivalent to the Amemiya-MaCurdy estimator, and GMM

based on the moment conditions M.1-M.5 is equivalent to the Breusch, Mizon and

Schmidt estimator.

We now return to the dynamic model (24) that contains y -1 as a

regressor, as well as X and Z. Now the extra instruments that are in R 1 but

not in G AM, or in R 2 but not in G BMS, are relevant because they help to

"explain" the regressor (Q Vy-1 ). Thus, if we maintain the assumptions SA.1-

SA.3 and E.1-E.4, the available moment conditions are given by (3), (4) and

(33). If we add assumption E.5, the set of moment conditions becomes (3), (4)

and (34).

Estimation of the model is a straightforward application of GMM. The

moment conditions (3) and (33) [or (34)] are linear in the parameters, while

the moment conditions (4) are nonlinear. A linearized GMM estimator is
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possible, along the line of Newey (1985). Some discussion of computational

details is given in Ahn (1990) and Ahn and Schmidt (1990).

7. CONCLUDING REMARKS

In this paper, we have extended the existing literature on the dynamic

panel data model in two directions. First, under standard assumptions, we

have counted the additional moment conditions not used by existing estimators,

and shown how to exploit these moment conditions efficiently. These extra

moment conditions can lead to substantial improvements in the efficiency of

estimation, leading to reductions in asymptotic variance on the order of two

or three. As a result we expect these extra moment conditions to be of

practical importance in empirical work. Second, when the model contains

exogenous variables in addition to the lagged dependent variable, we have

shown how to exploit the exogeneity assumptions about these variables

efficiently. Moment conditions (or instruments) that do not increase the

efficiency of estimation in the static model do increase efficiency in the

dynamic model.

It is also possible that the analysis of this paper could be extended

within the dynamic panel data model. Many of the "random effects" treatments

of this model that are currently found in the literature rely on stronger

assumptions than we have made, and they could profitably be recast in terms of

the moment conditions that they imply. For example, stationarity of the y

process has been considered by Arellano and Bover (1990). It implies that

E( αi y it ) is the same for all t, and leads to imposable moment conditions.

Stationarity also implies a restriction on the variance of y i0 that leads to

an imposable moment condition not considered by Arellano and Bover.

Presumably other specific assumptions about initial conditions would have

similar implications.
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APPENDIX 1

Equivalence of MD Estimators

We wish to show that the OMD estimator based on (17) is asymptotically

equivalent to the OMD estimator based on (20). To do so we show that the

minimands of the two estimators are asymptotically identical; that is, we

show that

(A.1) [v(S)-v( Ω)]’(J ψJ’) -1 [v(S)-v( Ω)]

= [v(Z)-v( Λ)]’(J J’) -1 [v(Z)-v( Λ)] .

To do so, note

(A.2) v(S)-v( Ω) = J[vec(S)-vec( Ω)]

= J[vec(DZD’)-vec(D ΛD’)]

= J(D ⊗D)[vec(Z)-vec( Λ)]

= J(D ⊗D)H[v(Z)-v( Λ)].

Similarly, J ψJ’ = J(D ⊗D) (D ⊗D)’J’. Therefore the first expression in (A.1)

becomes

(A.3) [v(S)-v( Ω)]’(J ψJ’) -1 [v(S)-v( Ω)]

= [v(Z)-v( Λ)]’H’(D ⊗D)J’[J(D ⊗D) (D ⊗D)’J’] -1

J(D ⊗D)H[v(Z)-v( Λ)].

To simplify this, use the fact [Magnus and Neudecker (1988, p. 50, equation

(14)] that (D ⊗D)HJ = HJ(D ⊗D) and the fact that JH = I, which imply that J(D ⊗D)

= JHJ(D ⊗D) = J(D ⊗D)HJ. With this substitution, the inverse on the right hand

side of (A.3) becomes

(A.4) [J(D ⊗D)HJ J’H’(D ⊗D)’J’] -1 = [H’(D ⊗D)’J’] -1 (J J’) -1 [J(D ⊗D)H] -1

and the right hand side of (A.3) simplifies to

(A.5) [v(Z)-v( Λ)]’(J J’) -1 [v(Z)-v( Λ)]

which is the same as the right hand side of (A.1).

Explanation of Equation (21) of the Text

There are (T+1)(T+2)/2 moment conditions in m( γ). The idea of equation

(21) is to split these into the T(T-1)/2 + (T-2) moment conditions in h( δ)

plus the additional (T+3) moment conditions in p( δ)- θ that determine θ in
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terms of δ. Note that θ is as defined in equation (14) of the main text. The

choice of p( δ) is not unique, and we pick p( δ) = N -1 Σi pi ( δ), with

(A.6) p i ( δ) = [y i0
2, u i1 ui2 , u i1 y i0 , u i1

2-u i1 ui2 , ..., u iT
2-u i1 ui2 ]

Similarly, let h( δ) = N -1 Σi hi ( δ), m( γ) = N -1 Σi mi ( γ). Then we wish

to find F such that Fm i ( γ) = [h i ( δ)’,p i ( δ)- θ]. To save space we

exhibit this transformation for the simplest possible case, T =

3. The transformation for T>3 is a straightforward extension of

the expression in (A.7).

2y u 0 0 0 -1 0 0 1 0 0 0 u - σ - σi0 i2 i1 αα 11

y u 0 0 0 0 0 0 -1 0 1 0 u u - σi0 i3 i1 i2 αα
y u 0 -1 1 0 0 0 - δ 0 δ 0 u u - σi1 i3 i1 i3 αα
u u 0 0 -1 0 0 1 0 0 0 0 u y - σi3 i2 i1 i0 0 α

2 2y - σ 0 0 0 0 0 0 0 0 0 1 u - σ - σi0 00 i2 αα 22

(A.7) u u - σ = 0 1 0 0 0 0 0 0 0 0 u u - σi1 i2 αα i2 i3 αα
u y - σ 0 0 0 1 0 0 0 0 0 0 u y - σi1 i0 0 α i2 i0 0 α

2 2u -u u - σ 1 -1 0 0 0 0 0 0 0 0 u - σ - σi1 i1 i2 11 i3 αα 33

2u -u u - σ 0 -1 0 0 1 0 0 0 0 0 u y - σi2 i1 i2 22 i3 i0 0 α
2 2u -u u - σ 0 -1 0 0 0 0 0 1 0 0 y - σi3 i1 i2 33 i0 00

Note that the last T+3=6 moment conditions on the left hand side of (A.7)

constitute p i ( δ)- θ. The first T(T-1)/2+(T-2)=4 moment conditions on the left

hand side of (A.7) constitute h i ( δ), and are linear combinations of elements

of m i ( γ). For terms of the form y is uit , s ≥1, the linear transformation depends

on δ. However, as in the proof above of the equivalence of OMD estimators

after a linear transformation involving δ, this does not matter

asymptotically.

APPENDIX 2
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We wish to show that the variance of the GMM/OMD estimator is equal to

the semiparametric bound. Let ξ be a single observation of i.i.d. data.

Defin e x = v( ξξ’) with E(x) = v( Ω) = µ( γ) where the dimensions of µ and γ are

p and q (p>q), repectively. Let f( ξ ρ) be a probability density function

where ρ is an abstract (infinite-dimensional) parameter vector to which a

parametric submodel corresponds. Then, µ( γ) = ∫ xf( ξ ρ)d ξ. Assuming that γ is

differentiable function of ρ, say γ( ρ), and defining G= ∂µ/ ∂ γ ’ as in the main

text, we obtain:

(A.8) G· ∂ γ / ∂ρ’ = ∫ xSρ’f( ξ ρ)d ξ = E(xS ρ’),

where S ρ = ∂ln(f)/ ∂ρ. Therefore, we have the following equality:

(A.9) ∂ γ / ∂ρ’ = E(dS ρ’),

wher e d = (G’AG) -1 G’Ax and A is any nonsingular matrix.

Let
^δ be an asymptotically linear estimator with influence function d.

Then, by Theorem 2.2 of Newey (1990, p. 103),
^δ is regular. Let {(S ρ) j } be any

sequence of all the possible scores for parametric submodels; and let s be a

q × 1 vector such that there exists a sequence of matrices with q rows, {A j },

with lim j →∞E[ s-A j (S ρ) j
2] = 0. We can define the tangent set by:

(A.10) = {s E(s ) = 0 and ∃ a matrix B with q rows ∋ E(xs’) = GB }

This conjecture can be verified as follows. Consider any s t

which is a linear combination of the true score: s t = ASρ. Then,

it is obvious that E(s t ) = 0. Also, (A.8) implies that E(xs t ’) =

E(xS ρ’A) = GB. Therefore, any s ∈ satisfies the restrictions on

the scores implied by the semiparametric model.

Now, defin e w = [G’(J ψJ) -1 G] -1 G’(J ψJ) -1 (x- µ). Then, we can

easily show that w ∈ . Note that

(A.11) d - w = {(G’AG) -1 G’A - [G’(J ψJ’) -1 G] -1 G’(J ψJ’) -1 }x

+ [G’(J ψJ’) -1 G] -1 G’(J ψJ’) -1 µ.

Then, the characteristics of imply that E[(d-w)s’ ] = 0 and

therefore E[(d-w)’s] for any s ∈ . By Theorem 3.1 of Newey (1990,
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p. 106), the semiparametric bound is E(ww’), which is simply the

variance of the OMD/GMM estimator. This completes the proof.
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